D6-25*4 多级离心泵 质量稳靠
浏览次数:138次
- 产品规格:
- 发货地:湖南省长沙雨花区
关键词
D6-25*4
详细说明
水量2-200M3/H
移动方式底座固定式
额定转速2900r/min
级数多级
汽蚀余量4M
结构原理离心式
电压380V
驱动方式电动
输送介质水
叶轮结构封团式
叶轮吸入方式单吸式
工作原理高山送水排水抽污 矿山油田 城市工程给排水
加工定制是
输出功率12-1000kw
颜色其他
叶轮数目多级
公称排量6-650mL/h
输入功率12-1000kw
出口直径40-200mm
D型多级离心泵气蚀、振动原因分析及改造D型多级离心泵在运转时,因设计、安装和管路布置的缺陷,泵很容易出现气蚀现象和较大振动,从而导致机械密封损坏、轴承磨损、叶轮前盖板磨损以及叶轮口环间隙变大等机械故障,从而影响设备的正常运转,增加设备的检维修费用。
气蚀的原因分析及影响
D型多级离心泵运转时偶尔会发生气蚀现象,当泵发生气蚀时,出口压力值迅速降低,同时伴有强烈的波动,严重时泵内会发出异常声响,从而泵体的振动也逐渐。
[1]
D型多级离心泵运行时完全靠泵的自吸效果,进而导致泵的压力过低,致使设备在运行过程中经常发生气蚀现象。
在输送过程中,可能会由于操作影响或管道保温等原因使输送介质的温度升高,从而发生气
蚀
[2]D型多级离心泵输送的介质属于轻组分易汽化物质时,在工艺条件变化或外部温度升高时( 夏季户外温度较高时尤为明显) ,会导致气蚀现象发生,严重时泵体的振动加剧。
如果D型多级离心泵的实际流量在小流量状态下运行就容易产生气蚀现象。
由于上述因素以及温度升高、液位降低及介质组分变化等工艺因素的影响,泵压力进一步下降,则更容易造成气蚀,这样就会使泵内经常产生憋压升温,造成介质汽化,使泵机械密封工作环境恶化,摩擦副端面不能形成液膜,从而导致摩擦副干摩擦,短时间如果没有及时停止运行还会导致机械密封的失效( 静环炸裂和密封圈碳化) 。
振动原因分析及影响
D型多级离心泵振动的原因是多方面的,包括D型多级离心泵的设计、制造、安装、运行、使用及系统管路布置等因素
气蚀是导致泵振动的直接原因,在产生噪音和振动的同时,不同频率的振动还可能引发共振效应,使与其关联的设备受到影响和破坏。而且在机械剥离与电化学腐蚀共同作用下,离心泵过流部件遭到腐蚀破坏,严重时会使过流部件失效,大大缩短了离心泵的使用寿命
D型多级离心泵振动是多方面原因引起的。在该类型泵中振动主要起因是气蚀,转子挠度过大、轴承承受径向力以及口环间隙变大等因素在运行中也会逐步起主导主用使得振动更加剧烈,从而导致泵出现轴承磨损、叶轮及叶轮口环磨损严重的现象。
D型多级离心泵结构改善措施
从工艺上控制泵的有效汽蚀余量
尽管液体泵产生气蚀的外部原因很多,除与泵本身的结构有关外,还与安装和操作密切相关,
防止液体气化是避免液体泵气蚀的根本措施。欲防止发生气蚀必须提高有效汽蚀余量
提高该型号泵有效汽蚀余量的方法有:
a. 加强介质管路的保冷,以防介质因吸收外界热量造成温度升高而汽化;
b. 泵启动前,当液体灌满泵时,要将泵内少量的气态介质完全排出;
c. 避免泵在空转状态下运行时间过长,一般规定在启动前将出口阀打开 1/3 为宜;
d. 一旦发生气蚀现象,应立即进行排气,严重时应直接停泵处理,以确保泵的安全。

结构组成:
1、叶轮是离心泵的核心部分,它转速高输出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过衡实验。叶轮上的内外表面要求光滑,以减少水流的摩擦损失。
2、泵体也称泵壳,它是水泵的主体。起到支撑固定作用,并与安装轴承的托架相连接。
3、泵轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的主要部件。
4、轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热!滑动轴承离心泵结构使用的是透明油作润滑剂的,加油到油位线。太多油要沿泵轴渗出并且漂,太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度高在85度一般运行在60度左右,如果高了要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理!
5、密封环又称减漏环。叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外援结合处装有密封环,密封的间隙保持在0.25~1.10mm之间为宜。
6、填料函主要由填料,水封环,填料筒,填料压盖,水封管组成。填料函的作用主要是为了封闭泵壳与泵轴之间的空隙,不让泵内的水流不流到外面来也不让外面的空气进入到泵内。始终保持水泵内的真空!当泵轴与填料摩擦产生热量要靠水封管住水到水封圈内使填料冷却!保持水泵的正常运行。所以在水泵的运行巡回检查过程中对填料函的检查是特别要注意!在运行600个小时左右要对填料进行更换。
叶轮安装在泵壳2内,并紧固在泵轴3上,泵轴由电机直接带动。泵壳有一液体吸入4与吸入管5连接。液体经底阀6和吸入管进入泵内。泵壳上的液体排出口8与排出管9连接。在离心泵启动前,泵壳内灌满被输送的液体;启动后,启动后,叶轮由轴带动高速转动,叶片间的液体也必须随着转动。在离心力的作用下,液体从叶轮被抛向外缘并获得能量,以高速离开叶轮外缘进入蜗形泵壳。在蜗壳中,液体由于流道的逐渐扩大而减速,又将部分动能转变为静压能,后以较高的压力流入排出管道,送至需要场所。液体由叶轮流向外缘时,在叶轮形成了一定的真空,由于贮槽液面上方的压力大于泵处的压力,液体便被连续压入叶轮中。可见,只要叶轮不断地转动,液体便会不断地被吸入和排出。

三元流技术就是把叶轮内部的三元立体空间无限地分割,通过对叶轮流道内各工作点的分析,建立起完整、真实的叶轮内流动的数学模型。
通过这一方法,对叶轮流道分析可以做得准确,反映流体的流场、压力分布也接近实际。叶轮出口为射流和尾迹(漩涡)的流动特征,在设计计算中得以体现。因此,设计的叶轮也就能更好地满足工况要求,效率显着提高。但是,如果单纯的将普通水泵的叶轮更换为三元流叶轮,其节能效果可能不能达到预期,因为在泵壳及其他部件都已经定型的情况下,单的三元流叶轮不能改变整个水泵内部所有的过流部件的水阻力和水损失。
节能水泵专为各类型循环水系统量身定做,其综合利用各项技术,将虹吸原理、三元流技术及技术的结合在一起,并将节能水泵从设计、开模、铸造、加工全过程把关控制,使其设计合理、开模符合设计要求,再应用的铸造工艺,减少铸造误差,终通过精心加工、打磨,使终的产品与设计理念相吻合,达到佳状态。
流体在节能水泵内部循环时,可呈现相对规则的流动状态,减小进口冲击、出口尾迹脱流等损失,极大的避免了紊流的出现,减少了普通泵单通道水力模型设计中流体的撞击和脱流,并且避免水在叶片之间形成回流,使水在叶轮间的流动更接近设计状态,提高了水泵流量,减少了无用功,,降低了能耗,提高了水泵效率。运用这种技术的水泵可以在流量不发生任何改变的情况下使水泵的有效轴功率显着减小,而且完全满足工业系统满负荷运行工况,不会使冷却水系统的水温升高,具有率,不改变系统的运行参数,对正常的生产工作没有任何影响。

多级泵装配 导叶
多级泵的导叶若采用不锈钢材料,则一般不会损坏;若采用锡青铜或铸铁,则应隔2~3年检查一次冲刷情况,必要时更换新导叶。凡是新铸的导叶,在使用前应用手砂轮将流道打磨光滑,这样可提率2%~3%。此外还应检查导叶衬套(应与叶轮配合在一起)的磨损情况,根据磨损的程度来确定是整修还是更换。导叶与泵壳的径向配合间隙为0.04~0.06mm,过大时则会影响转子与静止部件的同心度,应当予以更换。用来将导叶定位的定位销钉与泵壳的配合要过盈0.02~0.04mm,销钉头部与导叶配合处应有1.0—1.5mm的调整间隙。导叶在泵壳内应被适当地压紧,以防高压泵的导叶与泵壳隔板平面被水流冲刷。通常,压紧导叶的方法是在导叶背面叶片的肋上钻孔,加装3~4 个紫铜钉(尽量靠近导叶外缘,沿圆周均布),如图2-5 所示,利用紫铜钉的过盈量使导叶与泵壳配合面密封。加装的紫铜钉一般应高出背面导叶平面0.50~0.80mm。
长沙东方工业泵厂 多年老厂 品质保证 信誉良好 服务客户
m.csdfgyb.b2b168.com